Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 178
Filtrar
1.
AIDS ; 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38051788

RESUMO

OBJECTIVE: The primary objective of the study was to assess the immunogenicity of an HIV-1 Gag conserved element DNA vaccine (p24CE DNA) in people with HIV (PWH) receiving suppressive antiretroviral therapy (ART). DESIGN: AIDS Clinical Trials Group A5369 was a phase I/IIa, randomized, double-blind, placebo-controlled study of PWH receiving ART with plasma HIV-1 RNA less than 50 copies/ml, current CD4+ T-cell counts greater than 500 cells/µl, and nadir CD4+ T-cell counts greater than 350 cells/µl. METHODS: The study enrolled 45 participants randomized 2 : 1 : 1 to receive p24CE DNA vaccine at weeks 0 and 4, followed by p24CE DNA admixed with full-length p55Gag DNA vaccine at weeks 12 and 24 (arm A); full-length p55Gag DNA vaccine at weeks 0, 4, 12, and 24 (arm B); or placebo at weeks 0, 4, 12, and 24 (arm c). The active and placebo vaccines were administered by intramuscular electroporation. RESULTS: There was a modest, but significantly greater increase in the number of conserved elements recognized by CD4+ and/or CD8+ T cells in arm A compared with arm C (P = 0.014). The percentage of participants with an increased number of conserved elements recognized by T cells was also highest in arm A (8/18, 44.4%) vs. arm C (0/10, 0.0%) (P = 0.025). There were no significant differences between treatment groups in the change in magnitude of responses to total conserved elements. CONCLUSION: A DNA-delivered HIV-1 Gag conserved element vaccine boosted by a combination of this vaccine with a full-length p55Gag DNA vaccine induced a new conserved element-directed cellular immune response in approximately half the treated PWH on ART.

2.
Front Immunol ; 14: 1292568, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38090597

RESUMO

Introduction: Cytokines and chemokines play an important role in shaping innate and adaptive immunity in response to infection and vaccination. Systems serology identified immunological parameters predictive of beneficial response to the BNT162b2 mRNA vaccine in COVID-19 infection-naïve volunteers, COVID-19 convalescent patients and transplant patients with hematological malignancies. Here, we examined the dynamics of the serum cytokine/chemokine responses after the 3rd BNT162b2 mRNA vaccination in a cohort of COVID-19 infection-naïve volunteers. Methods: We measured serum cytokine and chemokine responses after the 3rd dose of the BNT162b2 mRNA (Pfizer/BioNtech) vaccine in COVID-19 infection-naïve individuals by a chemiluminescent assay and ELISA. Anti-Spike binding antibodies were measured by ELISA. Anti-Spike neutralizing antibodies were measured by a pseudotype assay. Results: Comparison to responses found after the 1st and 2nd vaccinations showed persistence of the coordinated responses of several cytokine/chemokines including the previously identified rapid and transient IL-15, IFN-γ, CXCL10/IP-10, TNF-α, IL-6 signature. In contrast to the transient (24hrs) effect of the IL-15 signature, an inflammatory/anti-inflammatory cytokine signature (CCL2/MCP-1, CCL3/MIP-1α, CCL4/MIP-1ß, CXCL8/IL-8, IL-1Ra) remained at higher levels up to one month after the 2nd and 3rd booster vaccinations, indicative of a state of longer-lasting innate immune change. We also identified a systemic transient increase of CXCL13 only after the 3rd vaccination, supporting stronger germinal center activity and the higher anti-Spike antibody responses. Changes of the IL-15 signature, and the inflammatory/anti-inflammatory cytokine profile correlated with neutralizing antibody levels also after the 3rd vaccination supporting their role as immune biomarkers for effective development of vaccine-induced humoral responses. Conclusion: These data revealed that repeated SARS-Cov-2 BNT162b2 mRNA vaccination induces both rapid transient as well as longer-lasting systemic serum cytokine changes associated with innate and adaptive immune responses. Clinical trial registration: Clinicaltrials.gov, identifier NCT04743388.


Assuntos
COVID-19 , Citocinas , Humanos , Vacina BNT162 , Interleucina-15 , SARS-CoV-2 , COVID-19/prevenção & controle , Imunidade Adaptativa , Vacinação , Anti-Inflamatórios
3.
J Immunother Cancer ; 11(10)2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37907221

RESUMO

BACKGROUND: Preclinically, interleukin-15 (IL-15) monotherapy promotes antitumor immune responses, which are enhanced when IL-15 is used in combination with immune checkpoint inhibitors (ICIs). This first-in-human study investigated NIZ985, a recombinant heterodimer comprising physiologically active IL-15 and IL-15 receptor α, as monotherapy and in combination with spartalizumab, an anti-programmed cell death protein-1 (anti-PD-1) monoclonal antibody, in patients with advanced solid tumors. METHODS: This phase I/Ib study had two dose-escalation arms: single-agent NIZ985 administered subcutaneously thrice weekly (TIW, 2 weeks on/2 weeks off) or once weekly (QW, 3 weeks on/1 week off), and NIZ985 TIW or QW administered subcutaneously plus spartalizumab (400 mg intravenously every 4 weeks (Q4W)). The dose-expansion phase investigated NIZ985 1 µg/kg TIW/spartalizumab 400 mg Q4W in patients with anti-PD-1-sensitive or anti-PD-1-resistant tumor types stratified according to approved indications. The primary objectives were the safety, tolerability, and the maximum tolerated doses (MTDs) and/or recommended dose for expansion (RDE) of NIZ985 for the dose-expansion phase. RESULTS: As of February 17, 2020, 83 patients (median age: 63 years; range: 28-85) were treated in dose escalation (N=47; single-agent NIZ985: n=27; NIZ985/spartalizumab n=20) and dose expansion (N=36). No dose-limiting toxicities occurred nor was the MTD identified. The most common treatment-related adverse event (TRAE) was injection site reaction (primarily grades 1-2; single-agent NIZ985: 85% (23/27)); NIZ985/spartalizumab: 89% [50/56]). The most common grade 3-4 TRAE was decreased lymphocyte count (single-agent NIZ985: 7% [2/27]; NIZ985/spartalizumab: 5% [3/56]). The best overall response was stable disease in the single-agent arm (30% (8/27)) and partial response in the NIZ985/spartalizumab arm (5% [3/56]; melanoma, pancreatic cancer, gastric cancer). In dose expansion, the disease control rate was 45% (5/11) in the anti-PD-1-sensitive and 20% (5/25) in the anti-PD-1-resistant tumor type cohorts. Pharmacokinetic parameters were similar across arms. The transient increase in CD8+ T cell and natural killer cell proliferation and induction of several cytokines occurred in response to the single-agent and combination treatments. CONCLUSIONS: NIZ985 was well tolerated in the single-agent and NIZ985/spartalizumab regimens. The RDE was established at 1 µg/kg TIW. Antitumor activity of the combination was observed against tumor types known to have a poor response to ICIs. TRIAL REGISTRATION NUMBER: NCT02452268.


Assuntos
Antineoplásicos , Melanoma , Segunda Neoplasia Primária , Humanos , Pessoa de Meia-Idade , Anticorpos Monoclonais , Anticorpos Monoclonais Humanizados/uso terapêutico , Inibidores de Checkpoint Imunológico/uso terapêutico , Interleucina-15/uso terapêutico , Melanoma/tratamento farmacológico , Segunda Neoplasia Primária/tratamento farmacológico , Adulto , Idoso , Idoso de 80 Anos ou mais
4.
Front Immunol ; 14: 1188018, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37207227

RESUMO

HIV-specific T cells are necessary for control of HIV-1 replication but are largely insufficient for viral clearance. This is due in part to these cells' recognition of immunodominant but variable regions of the virus, which facilitates viral escape via mutations that do not incur viral fitness costs. HIV-specific T cells targeting conserved viral elements are associated with viral control but are relatively infrequent in people living with HIV (PLWH). The goal of this study was to increase the number of these cells via an ex vivo cell manufacturing approach derived from our clinically-validated HIV-specific expanded T-cell (HXTC) process. Using a nonhuman primate (NHP) model of HIV infection, we sought to determine i) the feasibility of manufacturing ex vivo-expanded virus-specific T cells targeting viral conserved elements (CE, CE-XTCs), ii) the in vivo safety of these products, and iii) the impact of simian/human immunodeficiency virus (SHIV) challenge on their expansion, activity, and function. NHP CE-XTCs expanded up to 10-fold following co-culture with the combination of primary dendritic cells (DCs), PHA blasts pulsed with CE peptides, irradiated GM-K562 feeder cells, and autologous T cells from CE-vaccinated NHP. The resulting CE-XTC products contained high frequencies of CE-specific, polyfunctional T cells. However, consistent with prior studies with human HXTC and these cells' predominant CD8+ effector phenotype, we did not observe significant differences in CE-XTC persistence or SHIV acquisition in two CE-XTC-infused NHP compared to two control NHP. These data support the safety and feasibility of our approach and underscore the need for continued development of CE-XTC and similar cell-based strategies to redirect and increase the potency of cellular virus-specific adaptive immune responses.


Assuntos
Infecções por HIV , HIV-1 , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Vacinas , Animais , Humanos , Macaca mulatta , Linfócitos T CD8-Positivos
5.
Cell Rep ; 42(5): 112501, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37178117

RESUMO

Locoregional monotherapy with heterodimeric interleukin (IL)-15 (hetIL-15) in a triple-negative breast cancer (TNBC) orthotopic mouse model resulted in tumor eradication in 40% of treated mice, reduction of metastasis, and induction of immunological memory against breast cancer cells. hetIL-15 re-shaped the tumor microenvironment by promoting the intratumoral accumulation of cytotoxic lymphocytes, conventional type 1 dendritic cells (cDC1s), and a dendritic cell (DC) population expressing both CD103 and CD11b markers. These CD103intCD11b+DCs share phenotypic and gene expression characteristics with both cDC1s and cDC2s, have transcriptomic profiles more similar to monocyte-derived DCs (moDCs), and correlate with tumor regression. Therefore, hetIL-15, a cytokine directly affecting lymphocytes and inducing cytotoxic cells, also has an indirect rapid and significant effect on the recruitment of myeloid cells, initiating a cascade for tumor elimination through innate and adoptive immune mechanisms. The intratumoral CD103intCD11b+DC population induced by hetIL-15 may be targeted for the development of additional cancer immunotherapy approaches.


Assuntos
Antineoplásicos , Neoplasias , Camundongos , Animais , Cadeias alfa de Integrinas/metabolismo , Neoplasias/metabolismo , Citocinas/metabolismo , Células Dendríticas/metabolismo , Linfócitos/metabolismo , Antineoplásicos/metabolismo , Fatores Imunológicos/metabolismo , Camundongos Endogâmicos C57BL , Microambiente Tumoral
7.
iScience ; 26(2): 105929, 2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36685042

RESUMO

We employed a dose-escalation regimen in rhesus macaques to deliver glycosylated IL-7, a cytokine critical for development and maintenance of T lymphocytes. IL-7 increased proliferation and survival of T cells and triggered several chemokines and cytokines. Induction of CXCL13 in lymph nodes (LNs) led to a remarkable increase of B cells in the LNs, proliferation of germinal center follicular T helper cells and elevated IL-21 levels suggesting an increase in follicle activity. Transcriptomics analysis showed induction of IRF-7 and Flt3L, which was linked to increased frequency of circulating plasmacytoid dendritic cells (pDCs) on IL-7 treatment. These pDCs expressed higher levels of CCR7, homed to LNs, and were associated with upregulation of type-1 interferon gene signature and increased production of IFN-α2a on TLR stimulation. Superior effects and dose-sparing advantage was observed by the step-dose regimen. Thus, IL-7 treatment leads to systemic effects involving both lymphoid and myeloid compartments.

8.
Cancers (Basel) ; 14(23)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36497296

RESUMO

Patients with symptomatic monoclonal gammopathies have impaired humoral responses to COVID-19 vaccination. Their ability to recognize SARS-CoV-2 Omicron variants is of concern. We compared the response to BNT162b2 mRNA vaccinations of patients with multiple myeloma (MM, n = 60) or Waldenstrom's macroglobulinemia (WM, n = 20) with healthy vaccine recipients (n = 37). Patient cohorts on active therapy affecting B cell development had impaired binding and neutralizing antibody (NAb) response rate and magnitude, including several patients lacking responses, even after a 3rd vaccine dose, whereas non-B cell depleting therapies had a lesser effect. In contrast, MM and WM cohorts off-therapy showed increased NAb with a broad response range. ELISA Spike-Receptor Binding Domain (RBD) Ab titers in healthy vaccine recipients and patient cohorts were good predictors of the ability to neutralize not only the original WA1 but also the most divergent Omicron variants BA.4/5. Compared to WA1, significantly lower NAb responses to BA.4/5 were found in all patient cohorts on-therapy. In contrast, the MM and WM cohorts off-therapy showed a higher probability to neutralize BA.4/5 after the 3rd vaccination. Overall, the boost in NAb after the 3rd dose suggests that repeat vaccination of MM and WM patients is beneficial even under active therapy.

9.
Vaccines (Basel) ; 10(10)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36298629

RESUMO

COVID-19 is an infectious disease caused by the SARS-CoV-2 coronavirus and characterized by an extremely variable disease course, ranging from asymptomatic cases to severe illness. Although all individuals may be infected by SARS-CoV-2, some people, including those of older age and/or with certain health conditions, including cardiovascular disease, diabetes, cancer, and chronic respiratory disease, are at higher risk of getting seriously ill. For cancer patients, there are both direct consequences of the COVID-19 pandemic, including that they are more likely to be infected by SARS-CoV-2 and more prone to develop severe complications, as well as indirect effects, such as delayed cancer diagnosis or treatment and deferred tests. Accumulating data suggest that aberrant SARS-CoV-2 immune response can be attributed to impaired interferon signaling, hyper-inflammation, and delayed adaptive immune responses. Interestingly, the SARS-CoV-2-induced immunological abnormalities, DNA damage induction, generation of micronuclei, and the virus-induced telomere shortening can abnormally activate the DNA damage response (DDR) network that plays a critical role in genome diversity and stability. We present a review of the current literature regarding the molecular mechanisms that are implicated in the abnormal interplay of the immune system and the DDR network, possibly contributing to some of the COVID-19 complications.

10.
Front Immunol ; 13: 945706, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35935984

RESUMO

Immunogenicity of HIV-1 mRNA vaccine regimens was analyzed in a non-human primate animal model. Rhesus macaques immunized with mRNA in lipid nanoparticle (mRNA/LNP) formulation expressing HIV-1 Gag and Gag conserved regions (CE) as immunogens developed robust, durable antibody responses but low adaptive T-cell responses. Augmentation of the dose resulted in modest increases in vaccine-induced cellular immunity, with no difference in humoral responses. The gag mRNA/lipid nanoparticle (LNP) vaccine provided suboptimal priming of T cell responses for a heterologous DNA booster vaccination regimen. In contrast, a single immunization with gag mRNA/LNP efficiently boosted both humoral and cellular responses in macaques previously primed by a gag DNA-based vaccine. These anamnestic cellular responses were mediated by activated CD8+ T cells with a phenotype of differentiated T-bet+ cytotoxic memory T lymphocytes. The heterologous prime/boost regimens combining DNA and mRNA/LNP vaccine modalities maximized vaccine-induced cellular and humoral immune responses. Analysis of cytokine responses revealed a transient systemic signature characterized by the release of type I interferon, IL-15 and IFN-related chemokines. The pro-inflammatory status induced by the mRNA/LNP vaccine was also characterized by IL-23 and IL-6, concomitant with the release of IL-17 family of cytokines. Overall, the strong boost of cellular and humoral immunity induced by the mRNA/LNP vaccine suggests that it could be useful as a prophylactic vaccine in heterologous prime/boost modality and in immune therapeutic interventions against HIV infection or other chronic human diseases.


Assuntos
Vacinas contra a AIDS , Infecções por HIV , HIV-1 , Vacinas de DNA , Animais , Linfócitos T CD8-Positivos , Infecções por HIV/prevenção & controle , Lipossomos , Macaca mulatta , Nanopartículas , RNA Mensageiro/genética , Vacinas Sintéticas , Vacinas de mRNA
11.
Front Immunol ; 13: 899972, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35693807

RESUMO

Immunocompromised individuals including patients with hematological malignancies constitute a population at high risk of developing severe disease upon SARS-CoV-2 infection. Protection afforded by vaccination is frequently low and the biology leading to altered vaccine efficacy is not fully understood. A patient cohort who had received bone marrow transplantation or CAR-T cells was studied following a 2-dose BNT162b2 mRNA vaccination and compared to healthy vaccine recipients. Anti-Spike antibody and systemic innate responses were compared in the two vaccine cohorts. The patients had significantly lower SARS-CoV-2 Spike antibodies to the Wuhan strain, with proportional lower cross-recognition of Beta, Delta, and Omicron Spike-RBD proteins. Both cohorts neutralized the wildtype WA1 and Delta but not Omicron. Vaccination elicited an innate cytokine signature featuring IFN-γ, IL-15 and IP-10/CXCL10, but most patients showed a diminished systemic cytokine response. In patients who failed to develop antibodies, the innate systemic response was dominated by IL-8 and MIP-1α with significant attenuation in the IFN-γ, IL-15 and IP-10/CXCL10 signature response. Changes in IFN-γ and IP-10/CXCL10 at priming vaccination and IFN-γ, IL-15, IL-7 and IL-10 upon booster vaccination correlated with the Spike antibody magnitude and were predictive of successful antibody development. Overall, the patients showed heterogeneous adaptive and innate responses with lower humoral and reduced innate cytokine responses to vaccination compared to naïve vaccine recipients. The pattern of responses described offer novel prognostic approaches for potentiating the effectiveness of COVID-19 vaccination in transplant patients with hematological malignancies.


Assuntos
COVID-19 , Neoplasias Hematológicas , Vacinas Virais , Anticorpos Antivirais , Vacina BNT162 , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Quimiocina CXCL10 , Citocinas , Neoplasias Hematológicas/terapia , Humanos , Interleucina-15 , RNA Mensageiro , SARS-CoV-2
12.
PLoS One ; 17(4): e0263977, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35446847

RESUMO

The results of a simulation-based evaluation of several policies for vaccine rollout are reported, particularly focusing on the effects of delaying the second dose of two-dose vaccines. In the presence of limited vaccine supply, the specific policy choice is a pressing issue for several countries worldwide, and the adopted course of action will affect the extension or easing of non-pharmaceutical interventions in the next months. We employ a suitably generalised, age-structure, stochastic SEIR (Susceptible → Exposed → Infectious → Removed) epidemic model that can accommodate quantitative descriptions of the major effects resulting from distinct vaccination strategies. The different rates of social contacts among distinct age-groups (as well as some other model parameters) are informed by a recent survey conducted in Greece, but the conclusions are much more widely applicable. The results are summarised and evaluated in terms of the total number of deaths and infections as well as life years lost. The optimal strategy is found to be one based on fully vaccinating the elderly/at risk as quickly as possible, while extending the time-interval between the two vaccine doses to 12 weeks for all individuals below 75 years old, in agreement with epidemic theory which suggests targeting a combination of susceptibility and infectivity. This policy, which is similar to the approaches adopted in the UK and in Canada, is found to be effective in reducing deaths and life years lost in the period while vaccination is still being carried out.


Assuntos
COVID-19 , Vacinas , Idoso , Vacinas contra COVID-19 , Grécia/epidemiologia , Humanos , Políticas , SARS-CoV-2 , Vacinação
13.
Lancet Reg Health Eur ; 13: 100294, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35005678

RESUMO

In the summer of 2021, European governments removed most NPIs after experiencing prolonged second and third waves of the COVID-19 pandemic. Most countries failed to achieve immunization rates high enough to avoid resurgence of the virus. Public health strategies for autumn and winter 2021 have ranged from countries aiming at low incidence by re-introducing NPIs to accepting high incidence levels. However, such high incidence strategies almost certainly lead to the very consequences that they seek to avoid: restrictions that harm people and economies. At high incidence, the important pandemic containment measure 'test-trace-isolate-support' becomes inefficient. At that point, the spread of SARS-CoV-2 and its numerous harmful consequences can likely only be controlled through restrictions. We argue that all European countries need to pursue a low incidence strategy in a coordinated manner. Such an endeavour can only be successful if it is built on open communication and trust.

15.
Front Immunol ; 13: 1014802, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36713398

RESUMO

Immunotherapy has emerged as a viable approach in cancer therapy, with cytokines being of great interest. Interleukin IL-15 (IL-15), a cytokine that supports cytotoxic immune cells, has been successfully tested as an anti-cancer and anti-metastatic agent, but combinations with conventional chemotherapy and surgery protocols have not been extensively studied. We have produced heterodimeric IL-15 (hetIL-15), which has shown anti-tumor efficacy in several murine cancer models and is being evaluated in clinical trials for metastatic cancers. In this study, we examined the therapeutic effects of hetIL-15 in combination with chemotherapy and surgery in the 4T1 mouse model of metastatic triple negative breast cancer (TNBC). hetIL-15 monotherapy exhibited potent anti-metastatic effects by diminishing the number of circulating tumor cells (CTCs) and by controlling tumor cells colonization of the lungs. hetIL-15 treatment in combination with doxorubicin resulted in enhanced anti-metastatic activity and extended animal survival. Systemic immune phenotype analysis showed that the chemoimmunotherapeutic regimen shifted the tumor-induced imbalance of polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) in favor of cytotoxic effector cells, by simultaneously decreasing PMN-MDSCs and increasing the frequency and activation of effector (CD8+T and NK) cells. Tumor resection supported by neoadjuvant and adjuvant administration of hetIL-15, either alone or in combination with doxorubicin, resulted in the cure of approximately half of the treated animals and the development of anti-4T1 tumor immunity. Our findings demonstrate a significant anti-metastatic potential of hetIL-15 in combination with chemotherapy and surgery and suggest exploring the use of this regimen for the treatment of TNBC.


Assuntos
Antineoplásicos , Células Neoplásicas Circulantes , Neoplasias de Mama Triplo Negativas , Humanos , Animais , Camundongos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Interleucina-15/uso terapêutico , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Doxorrubicina/uso terapêutico , Fatores Imunológicos/uso terapêutico
16.
Front Immunol ; 12: 793953, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34899762

RESUMO

Durability of SARS-CoV-2 Spike antibody responses after infection provides information relevant to understanding protection against COVID-19 in humans. We report the results of a sequential evaluation of anti-SARS-CoV-2 antibodies in convalescent patients with a median follow-up of 14 months (range 12.4-15.4) post first symptom onset. We report persistence of antibodies for all four specificities tested [Spike, Spike Receptor Binding Domain (Spike-RBD), Nucleocapsid, Nucleocapsid RNA Binding Domain (N-RBD)]. Anti-Spike antibodies persist better than anti-Nucleocapsid antibodies. The durability analysis supports a bi-phasic antibody decay with longer half-lives of antibodies after 6 months and antibody persistence for up to 14 months. Patients infected with the Wuhan (WA1) strain maintained strong cross-reactive recognition of Alpha and Delta Spike-RBD but significantly reduced binding to Beta and Mu Spike-RBD. Sixty percent of convalescent patients with detectable WA1-specific NAb also showed strong neutralization of the Delta variant, the prevalent strain of the present pandemic. These data show that convalescent patients maintain functional antibody responses for more than one year after infection, suggesting a strong long-lasting response after symptomatic disease that may offer a prolonged protection against re-infection. One patient from this cohort showed strong increase of both Spike and Nucleocapsid antibodies at 14 months post-infection indicating SARS-CoV-2 re-exposure. These antibodies showed stronger cross-reactivity to a panel of Spike-RBD including Beta, Delta and Mu and neutralization of a panel of Spike variants including Beta and Gamma. This patient provides an example of strong anti-Spike recall immunity able to control infection at an asymptomatic level. Together, the antibodies from SARS-CoV-2 convalescent patients persist over 14 months and continue to maintain cross-reactivity to the current variants of concern and show strong functional properties.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Adulto , Idoso , Anticorpos Neutralizantes/metabolismo , Anticorpos Antivirais/metabolismo , Sítios de Ligação de Anticorpos/imunologia , COVID-19/virologia , Estudos de Coortes , Reações Cruzadas/imunologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Testes de Neutralização/métodos , Nucleocapsídeo/imunologia , Nucleocapsídeo/metabolismo , Ligação Proteica/imunologia , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Fatores de Tempo
17.
J Immunother Cancer ; 9(11)2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34799399

RESUMO

BACKGROUND: NIZ985 is a recombinant heterodimer of physiologically active interleukin (IL-)15 and IL-15 receptor alpha. In preclinical models, NIZ985 promotes cytotoxic lymphocyte proliferation, killing function, and organ/tumor infiltration, with resultant anticancer effects. In this first-in-human study, we assessed the safety, pharmacokinetics, and immune effects of NIZ985 in patients with metastatic or unresectable solid tumors. METHODS: Single agent NIZ985 dose escalation data are reported from a phase I dose escalation/expansion study of NIZ985 as monotherapy. Adult patients (N=14) received 0.25, 0.5, 1, 2 or 4 µg/kg subcutaneous NIZ985 three times weekly (TIW) for the first 2 weeks of each 28-day cycle, in an accelerated 3+3 dose escalation trial design. IL-15 and endogenous cytokines were monitored by ELISA and multiplexed electrochemiluminescent assays. Multiparameter flow cytometry assessed the frequency, phenotype and proliferation of peripheral blood mononuclear cells. Preliminary antitumor activity was assessed by overall response rate (Response Evaluation Criteria in Solid Tumors V.1.1). RESULTS: As of March 2, 2020, median treatment duration was 7.5 weeks (range 1.1-77.1). Thirteen patients had discontinued and one (uveal melanoma) remains on treatment with stable disease. Best clinical response was stable disease (3 of 14 patients; 21%). The most frequent adverse events (AEs) were circular erythematous injection site reactions (100%), chills (71%), fatigue (57%), and fever (50%). Treatment-related grade 3/4 AEs occurred in six participants (43%); treatment-related serious AEs (SAEs) in three (21%). The per-protocol maximum tolerated dose was not reached. Pharmacokinetic accumulation of serum IL-15 in the first week was followed by significantly lower levels in week 2, likely due to more rapid cytokine consumption by an expanding lymphocyte pool. NIZ985 treatment was associated with increases in several cytokines, including interferon (IFN)-γ, IL-18, C-X-C motif chemokine ligand 10, and tumor necrosis factor-ß, plus significant induction of cytotoxic lymphocyte proliferation (including natural killer and CD8+ T cells), increased CD16+ monocytes, and increased CD163+ macrophages at injection sites. CONCLUSIONS: Subcutaneous NIZ985 TIW was generally well tolerated in patients with advanced cancer and produced immune activation paralleling preclinical observations, with induction of IFN-γ and proliferation of cytotoxic lymphocytes. Due to delayed SAEs at the two highest dose levels, administration is being changed to once-weekly in a revised protocol, as monotherapy and combined with checkpoint inhibitor spartalizumab. These alterations are expected to maximize the potential of NIZ985 as a novel immunotherapy. TRIAL REGISTRATION NUMBER: NCT02452268.


Assuntos
Interleucina-15/administração & dosagem , Interleucina-15/agonistas , Neoplasias/tratamento farmacológico , Receptores de Interleucina-15/administração & dosagem , Adulto , Idoso , Feminino , Humanos , Imunoterapia , Masculino , Pessoa de Meia-Idade , Metástase Neoplásica , Multimerização Proteica , Proteínas Recombinantes/administração & dosagem
18.
Viruses ; 13(9)2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34578426

RESUMO

COVID-19 is an ongoing pandemic with high morbidity and mortality. Despite meticulous research, only dexamethasone has shown consistent mortality reduction. Convalescent plasma (CP) infusion might also develop into a safe and effective treatment modality on the basis of recent studies and meta-analyses; however, little is known regarding the kinetics of antibodies in CP recipients. To evaluate the kinetics, we followed 31 CP recipients longitudinally enrolled at a median of 3 days post symptom onset for changes in binding and neutralizing antibody titers and viral loads. Antibodies against the complete trimeric Spike protein and the receptor-binding domain (Spike-RBD), as well as against the complete Nucleocapsid protein and the RNA binding domain (N-RBD) were determined at baseline and weekly following CP infusion. Neutralizing antibody (pseudotype NAb) titers were determined at the same time points. Viral loads were determined semi-quantitatively by SARS-CoV-2 PCR. Patients with low humoral responses at entry showed a robust increase of antibodies to all SARS-CoV-2 proteins and Nab, reaching peak levels within 2 weeks. The rapid increase in binding and neutralizing antibodies was paralleled by a concomitant clearance of the virus within the same timeframe. Patients with high humoral responses at entry demonstrated low or no further increases; however, virus clearance followed the same trajectory as in patients with low antibody response at baseline. Together, the sequential immunological and virological analysis of this well-defined cohort of patients early in infection shows the presence of high levels of binding and neutralizing antibodies and potent clearance of the virus.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/imunologia , COVID-19/virologia , Nucleocapsídeo/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Carga Viral , Idoso , Idoso de 80 Anos ou mais , Formação de Anticorpos/imunologia , COVID-19/terapia , Feminino , Interações Hospedeiro-Patógeno , Humanos , Imunização Passiva , Cinética , Masculino , Pessoa de Meia-Idade , Soroterapia para COVID-19
19.
PLoS Pathog ; 17(9): e1009701, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34551020

RESUMO

The speed of development, versatility and efficacy of mRNA-based vaccines have been amply demonstrated in the case of SARS-CoV-2. DNA vaccines represent an important alternative since they induce both humoral and cellular immune responses in animal models and in human trials. We tested the immunogenicity and protective efficacy of DNA-based vaccine regimens expressing different prefusion-stabilized Wuhan-Hu-1 SARS-CoV-2 Spike antigens upon intramuscular injection followed by electroporation in rhesus macaques. Different Spike DNA vaccine regimens induced antibodies that potently neutralized SARS-CoV-2 in vitro and elicited robust T cell responses. The antibodies recognized and potently neutralized a panel of different Spike variants including Alpha, Delta, Epsilon, Eta and A.23.1, but to a lesser extent Beta and Gamma. The DNA-only vaccine regimens were compared to a regimen that included co-immunization of Spike DNA and protein in the same anatomical site, the latter of which showed significant higher antibody responses. All vaccine regimens led to control of SARS-CoV-2 intranasal/intratracheal challenge and absence of virus dissemination to the lower respiratory tract. Vaccine-induced binding and neutralizing antibody titers and antibody-dependent cellular phagocytosis inversely correlated with transient virus levels in the nasal mucosa. Importantly, the Spike DNA+Protein co-immunization regimen induced the highest binding and neutralizing antibodies and showed the strongest control against SARS-CoV-2 challenge in rhesus macaques.


Assuntos
Macaca mulatta , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinas de DNA , Animais , COVID-19/imunologia , COVID-19/terapia , Estudos de Coortes , DNA Viral/imunologia , Modelos Animais de Doenças , Feminino , Imunização Passiva , Leucócitos Mononucleares/imunologia , Camundongos , RNA Mensageiro/análise , SARS-CoV-2/genética , Linfócitos T/imunologia , Vacinas de DNA/administração & dosagem , Vacinas de DNA/imunologia , Soroterapia para COVID-19
20.
Cell Rep ; 36(6): 109504, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34352226

RESUMO

Early responses to vaccination are important for shaping both humoral and cellular protective immunity. Dissecting innate vaccine signatures may predict immunogenicity to help optimize the efficacy of mRNA and other vaccine strategies. Here, we characterize the cytokine and chemokine responses to the 1st and 2nd dose of the BNT162b2 mRNA (Pfizer/BioNtech) vaccine in antigen-naive and in previously coronavirus disease 2019 (COVID-19)-infected individuals (NCT04743388). Transient increases in interleukin-15 (IL-15) and interferon gamma (IFN-γ) levels early after boost correlate with Spike antibody levels, supporting their use as biomarkers of effective humoral immunity development in response to vaccination. We identify a systemic signature including increases in IL-15, IFN-γ, and IP-10/CXCL10 after the 1st vaccination, which were enriched by tumor necrosis factor alpha (TNF-α) and IL-6 after the 2nd vaccination. In previously COVID-19-infected individuals, a single vaccination results in both strong cytokine induction and antibody titers similar to the ones observed upon booster vaccination in antigen-naive individuals, a result with potential implication for future public health recommendations.


Assuntos
Vacinas contra COVID-19/imunologia , COVID-19/imunologia , Quimiocina CXCL10/imunologia , Interferon gama/imunologia , Interleucina-15/imunologia , SARS-CoV-2/imunologia , Adulto , Idoso , Anticorpos Antivirais/imunologia , Vacina BNT162 , COVID-19/metabolismo , Vacinas contra COVID-19/administração & dosagem , Feminino , Humanos , Imunidade/imunologia , Masculino , Pessoa de Meia-Idade , RNA Mensageiro/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...